A more efficient algorithm for Convex Nonparametric Least Squares

نویسندگان

  • Chia-Yen Lee
  • Andrew L. Johnson
  • Erick Moreno-Centeno
  • Timo Kuosmanen
چکیده

Convex Nonparametric Least Squares (CNLSs) is a nonparametric regression method that does not require a priori specification of the functional form. The CNLS problem is solved by mathematical programming techniques; however, since the CNLS problem size grows quadratically as a function of the number of observations, standard quadratic programming (QP) and Nonlinear Programming (NLP) algorithms are inadequate for handling large samples, and the computational burdens become significant even for relatively small samples. This study proposes a generic algorithm that improves the computational performance in small samples and is able to solve problems that are currently unattainable. A Monte Carlo simulation is performed to evaluate the performance of six variants of the proposed algorithm. These experimental results indicate that the most effective variant can be identified given the sample size and the dimensionality. The computational benefits of the new algorithm are demonstrated by an empirical application that proved insurmountable for the standard QP and NLP algorithms. 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Multivariate Regression Subject to Constraint

We review Hildreth's algorithm for computing the least squares regression subject to inequality constraints and Dykstra's generalization. We provide a geometric proof of convergence and several ehancements to the algorithm and generalize the application of the algorithm from convex cones to convex sets.

متن کامل

A Canonical Process for Estimation of Convex Functions: the “invelope” of Integrated

A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process “the invelope” and show that it is an almost surely uniquely defined function of integrated Brownian motion. Its role is comparable to the role of the...

متن کامل

​Rank based Least-squares Independent Component Analysis

  In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...

متن کامل

Computation of Nonparametric Convex Hazard Estimators via Profile Methods Technical Report 542 Department of Statistics, University of Washington

Abstract. In this paper we develop an algorithm to find the maximum likelihood estimator of a convex hazard function. The maximization is done in two steps. First, we use the support reduction algorithm of [GJW1] to find the profile likelihood over a constrained space. We next show that (−1) times the profile likelihood is bathtub-shaped in the parameters, and use a bisection algorithm to find ...

متن کامل

A canonical process for estimation of convex functions : the \ invelope

A process associated with integrated Brownian motion is introduced that characterizes the limit behavior of nonparametric least squares and maximum likelihood estimators of convex functions and convex densities, respectively. We call this process \the invelope" and show that it is an almost surely uniquely de ned function of integrated Brownian motion. Its role is comparable to the role of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2013